TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

TAs: Xiao Luo and Kumar Kshitij Patel

Lecture 2: Vector Space Applications and Linear Transformations

Recap

- Fields (like \mathbb{R} , \mathbb{Q} , \mathbb{F}_p)
- Vector spaces (like \mathbb{R}^n , \mathbb{F}_p^n)
- Linear dependence / independence
- Span(S)
- Basis of V
- Steinitz Exchange Principle
- Dimension of finitely-generated vector space

Existence of bases in general vector spaces

- Any finitely-generated vector space (\exists finite set T s.t. Span(T) = V) has a basis.
- Turns out also true for general vector spaces (even infinite-dimensional).
 - Example of such vector space? Polynomials R[X] over \mathbb{R} , or \mathbb{R} over \mathbb{Q}
 - $f(n) = x^n$, for $n = 0,1,2,\cdots$
 - We define span using finite linear combination (Hamel Basis)
 - Generic vector space may not have notion of distance, closeness and convergence
- Proving it uses "Zorn's lemma" which is equivalent to axiom of choice.
- Won't get into here.

1 Applications of our development so far

1.1 Lagrange interpolation

Lagrange interpolation is used to find the unique polynomial of degree at most n-1, taking given values at n distinct points. We can derive the formula for such a polynomial using basic linear algebra.

Recall that the space of polynomials of degree at most n-1 with real coefficients, denoted by $\mathbb{R}^{\leq n-1}[x]$, is a vector space. What is the dimension of this space? What would be a simple example of a basis?

• Dimension is n. Standard basis is $\{1, x, x^2, ..., x^{n-1}\}$.

Let $a_1, ..., a_n \in \mathbb{R}$ be distinct. Say we want to find the unique polynomial p of degree at most n-1 satisfying $p(a_i) = b_i \ \forall i \in [n]$.

- Why unique?
 - ▶ If there were two, say p_1 , p_2 , then $p_1 p_2$ would have at least n roots. But a nonzero polynomial of degree at most n-1 can have at most n-1 roots.

Let $a_1, ..., a_n \in \mathbb{R}$ be distinct. Say we want to find the unique polynomial p of degree at most n-1 satisfying $p(a_i) = b_i \ \forall i \in [n]$. Recall from the last lecture that if we define g(x) as $\prod_{i=1}^{n} (x - a_i)$, the degree n-1 polynomials defined as

$$f_i(x) = \frac{g(x)}{x - a_i} = \prod_{j \neq i}^n (x - a_j),$$

Let $a_1, ..., a_n \in \mathbb{R}$ be distinct. Say we want to find the unique polynomial p of degree at most n-1 satisfying $p(a_i) = b_i \ \forall i \in [n]$. Recall from the last lecture that if we define g(x) as $\prod_{i=1}^{n} (x - a_i)$, the degree n-1 polynomials defined as

$$f_i(x) = \frac{g(x)}{x - a_i} = \prod_{j \neq i}^n (x - a_j),$$

are n linearly independent polynomials in $\mathbb{R}^{\leq n-1}[x]$. Thus, they must form a basis for $\mathbb{R}^{\leq n-1}[x]$ and we can write the required polynomial, say p as

$$p = \sum_{i=1}^n c_i \cdot f_i,$$

for some $c_1, \ldots, c_n \in \mathbb{R}$.

Let $a_1, ..., a_n \in \mathbb{R}$ be distinct. Say we want to find the unique polynomial p of degree at most n-1 satisfying $p(a_i) = b_i \ \forall i \in [n]$. Recall from the last lecture that if we define g(x) as $\prod_{i=1}^{n} (x - a_i)$, the degree n-1 polynomials defined as

$$f_i(x) = \frac{g(x)}{x - a_i} = \prod_{j \neq i}^n (x - a_j),$$

are n linearly independent polynomials in $\mathbb{R}^{\leq n-1}[x]$. Thus, they must form a basis for $\mathbb{R}^{\leq n-1}[x]$ and we can write the required polynomial, say p as

$$p = \sum_{i=1}^n c_i \cdot f_i,$$

for some $c_1, \ldots, c_n \in \mathbb{R}$. Evaluating both sides at a_i gives $p(a_i) = b_i = c_i \cdot f_i(a_i)$. Thus, we get

$$p(x) = \sum_{i=1}^{n} \frac{b_i}{f_i(a_i)} \cdot f_i(x).$$

other terms

evaluate to 0

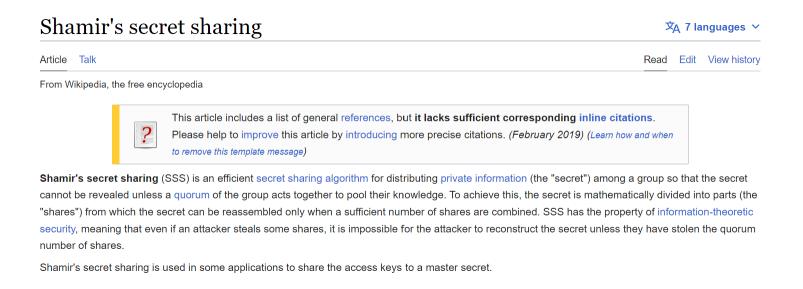
Let $a_1, ..., a_n \in \mathbb{R}$ be distinct. Say we want to find the unique polynomial p of degree at most n-1 satisfying $p(a_i) = b_i \ \forall i \in [n]$.

• Argument works if replace $\mathbb R$ with any field $\mathbb F$ having at least n distinct points.

Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M] with a group of n people, such that if any d of them get together, they are able to learn the secret message. However, if fewer than d of them are together, they do not get any information about the secret.

• E.g., password, (decryption key for) sensitive data, etc.



Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M] with a group of n people, such that if any d of them get together, they are able to learn the secret message. However, if fewer than d of them are together, they do not get any information about the secret. We can then proceed as follows:

- Choose a finite field \mathbb{F}_p , with $p > \max(n, M)$.
- Choose d-1 random values b_1, \ldots, b_{d-1} in $\{0, ..., p-1\}$, and let $Q \in \mathbb{F}_p^{\leq d-1}[x]$ be the polynomial

$$Q = s + b_1 x + b_2 x^2 + \dots + b_{d-1} x^{d-1}.$$

Note that the secret is Q(0).

• For i = 1, ..., n, give person i the pair (i, Q(i)).

One direction: If any d get together, can uniquely determine Q by Lagrange interpolation, recover secret by evaluating Q at 0.

Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M] with a group of n people, such that if any d of them get together, they are able to learn the secret message. However, if fewer than d of them are together, they do not get any information about the secret. We can then proceed as follows:

- Choose a finite field \mathbb{F}_p , with $p > \max(n, M)$.
- Choose d-1 random values b_1, \ldots, b_{d-1} in $\{0, ..., p-1\}$, and let $Q \in \mathbb{F}_p^{\leq d-1}[x]$ be the polynomial

$$Q = s + b_1 x + b_2 x^2 + \dots + b_{d-1} x^{d-1}.$$

Note that the secret is Q(0).

• For i = 1, ..., n, give person i the pair (i, Q(i)).

Other direction:

- If d-1 get together, for any secret s', exists a consistent polynomial Q'. In fact, exactly one.
- Because Q chosen randomly from p^{d-1} polynomials consistent with secret, this means any two secrets have the same probability of producing the observed d-1 shares.

3 Linear Transformations

Definition 3.1 *Let* V *and* W *be vector spaces over the same field* \mathbb{F} . A *map* $\varphi : V \to W$ *is called a* linear transformation *if*

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) \quad \forall v_1, v_2 \in V.$
- $\varphi(c \cdot v) = c \cdot \varphi(v) \quad \forall v \in V.$

Example 3.2

- A matrix $A \in \mathbb{R}^{m \times n}$ (m rows, n columns) defines a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Note that we are using $\varphi_A(v) = Av$, where we are viewing the elements of \mathbb{R}^m and \mathbb{R}^n as column vectors.
- φ : $C([0,1],\mathbb{R}) \to C([0,2],\mathbb{R})$ defined by $\varphi(f)(x) = f(x/2)$. Recall that $C([a,b],\mathbb{R}) = \{f : [a,b] \to \mathbb{R} \mid f \text{ is continuous}\}.$
- φ : $C([0,1], \mathbb{R})$ → $C([0,1], \mathbb{R})$ defined by $\varphi(f)(x) = f(x^2)$.

Important properties

Proposition 3.3 *Let* V, W *be vector spaces over* \mathbb{F} *and let* B *be a basis for* V. *Let* $\alpha: B \to W$ *be an arbitrary map. Then there exists a unique linear transformation* $\varphi: V \to W$ *satisfying* $\varphi(v) = \alpha(v) \ \forall v \in B$.

Proof: Since B is a basis, any $u \in V$ can be written in a unique way as a sum $\sum_{v \in B} a_v v$, where the values a_v are in \mathbb{F} and only finitely many are nonzero. By the two properties of a linear transformation, we must then have $\varphi(u) = \sum_{v \in B} a_v \varphi(v)$. Since the values $\varphi(v)$ are fixed for all $v \in B$, this gives the unique solution of $\varphi(u) = \sum_{v \in B} a_v \alpha(v)$. Moreover, this φ indeed satisfies the property that $\varphi(v) = \alpha(v)$ for all $v \in B$.

Important properties

Proposition 3.3 *Let* V, W *be vector spaces over* \mathbb{F} *and let* B *be a basis for* V. *Let* $\alpha: B \to W$ *be an arbitrary map. Then there exists a unique linear transformation* $\varphi: V \to W$ *satisfying* $\varphi(v) = \alpha(v) \ \forall v \in B$.

Proposition 3.3 solidifies the connection between linear transformations and matrices. We saw that a matrix $A \in \mathbb{F}^{m \times n}$ corresponds to a linear transformation φ_A from \mathbb{F}^n to \mathbb{F}^m defined as $\varphi_A(v) = Av$. But we can also go the other way as well. Given a linear transformation $\varphi : \mathbb{F}^n \to \mathbb{F}^m$, consider the standard basis $B = \{e_1, ..., e_n\}$ for \mathbb{F}^n , where e_i has 1 in its ith coordinate and 0 in all other coordinates. By Proposition 3.3, φ is uniquely defined by its effect on B, and so can be represented by the matrix $A \in \mathbb{F}^{m \times n}$ with $\varphi(e_i)$ as its ith column.

Definition 3.4 *Let* $\varphi : V \to W$ *be a linear transformation. We define its* kernel *and* image *as:*

- $\ker(\varphi) := \{v \in V \mid \varphi(v) = 0_W\}$. [Kernel also called "nullspace"]
- $-\operatorname{im}(\varphi) = \{\varphi(v) \mid v \in V\}.$

Proposition 3.5 $\ker(\varphi)$ *is a subspace of V and* $\operatorname{im}(\varphi)$ *is a subspace of W.*

Definition 3.6 dim(im(φ)) is called the rank and dim(ker(φ)) is called the nullity of φ .

What is rank of
$$\varphi_A$$
 for $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 2 \end{bmatrix}$? Rank is 2

Nullspace just 0_V since columns are independent

What is rank of
$$\varphi_B$$
 for B= $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$? Rank is 2 How about nullspace? All multiples of $\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$ 17

Definition 3.4 *Let* $\varphi : V \to W$ *be a linear transformation. We define its* kernel *and* image *as:*

- $\ker(\varphi) := \{v \in V \mid \varphi(v) = 0_W\}$. [Kernel also called "nullspace"]
- $-\operatorname{im}(\varphi) = \{\varphi(v) \mid v \in V\}.$

Proposition 3.5 $\ker(\varphi)$ *is a subspace of V and* $\operatorname{im}(\varphi)$ *is a subspace of W.*

Definition 3.6 dim(im(φ)) *is called the rank and* dim(ker(φ)) *is called the nullity of* φ .

Proposition 3.7 (rank-nullity theorem) *If* V *is a finite dimensional vector space and* $\varphi : V \to W$ *is a linear transformation, then*

$$\dim(\ker(\varphi)) + \dim(\operatorname{im}(\varphi)) = \dim(V).$$

Proof: Let $n = \dim(V)$ and let $k = \dim(\ker(\varphi))$. Choose a basis $v_1, ..., v_k$ for the kernel and then extend this to a basis B for V with linearly independent vectors $v_{k+1}, ..., v_n$ (which we can always do, as we saw in the last class). We know that

$$im(\varphi) = Span(\{\varphi(v_1), ..., \varphi(v_n)\}) = Span(\{\varphi(v_{k+1}), ..., \varphi(v_n)\}).$$

So, to show that the rank is n-k, all that remains is to show that $\varphi(v_{k+1}),...,\varphi(v_n)$ are linearly independent. This follows from the definition of linear transformation: if some linear combination of $\varphi(v_{k+1}),...,\varphi(v_n)$ equals 0 then so does φ of the same linear combination of $v_{k+1},...,v_n$, meaning that this linear combination of $v_{k+1},...,v_n$ lies in the kernel. This contradicts the fact that they were all linearly independent of $v_1,...,v_k$.