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Recap

Fields (like R, Q, IFp)

Vector spaces (like R", IF})

* Linear dependence / independence

Span(S)

Basis of V

Steinitz Exchange Principle

Dimension of finitely-generated vector space



Existence of bases in general vector spaces

* Any finitely-generated vector space (3 finite set T s.t. Span(T) = V) has a basis.

* Turns out also true for general vector spaces (even infinite-dimensional).

* Example of such vector space? Polynomials R [X] over R, or R over Q
* f(n) =x" forn=0,1,2,-
* We define span using finite linear combination (Hamel Basis)

* Generic vector space may not have notion of distance, closeness and convergence

* Proving it uses “Zorn’s lemma” which is equivalent to axiom of choice.

* Won’t get into here.



1 Applications of our development so far

1.1 Lagrange interpolation

Lagrange interpolation is used to find the unique polynomial of degree at most n — 1,
taking given values at n distinct points. We can derive the formula for such a polynomial
using basic linear algebra.
Recall that the space of polynomials of degree at most n — 1 with real coefficients, denoted
by R=""1[x], is a vector space. What is the dimension of this space? What would be a
simple example of a basis?

* Dimension is n. Standard basis is {1, x, x2, ..., x™""1}.



Lagrange Interpolation (contd)

Let a1,...,a, € R be distinct. Say we want to find the unique polynomial p of degree at
most n — 1 satisfying p(a;) = b; Vi € [n].

* Why unique?

> If there were two, say p4, p,, then p; — p, would have at least n roots. But a
nonzero polynomial of degree at most n — 1 can have at most n — 1 roots.



Lagrange Interpolation (contd)

Let a1,...,a, € R be distinct. Say we want to find the unique polynomial p of degree at
most n — 1 satisfying p(a;) = b; Vi € [n]. Recall from the last lecture that if we define g(x)

as [Ti.(x — a;), the degree n — 1 polynomials defined as
(I )
fix) = 35— T]x-ay,

J#



Lagrange Interpolation (contd)

Let ay,...,a, € R be distinct. Say we want to find the unique polynomial p of degree at
most n — 1 satisfying p(a;) = b; Vi € [n]. Recall from the last lecture that if we define g(x)

as [Ti.(x — a;), the degree n — 1 polynomials defined as
Y )
fix) = 35— T]x-ay,
* j#i

are n linearly independent polynomials in R="~1[x]. Thus, they must form a basis for
R="~1[x] and we can write the required polynomial, say p as

p =Y c-fi,
1=1

for some cq,...,¢,; € R.



Lagrange Interpolation (contd)

Let a1,...,a, € R be distinct. Say we want to find the unique polynomial p of degree at
most n — 1 satisfying p(a;) = b; Vi € [n]. Recall from the last lecture that if we define g(x)

as [Ti.(x — a;), the degree n — 1 polynomials defined as
Y )
fix) = 35— T]x-ay,
* j#i

are n linearly independent polynomials in R="~1[x]. Thus, they must form a basis for
R="~1[x] and we can write the required polynomial, say p as

other terms

Because all the
EC: fi, evaluate to O

for some ¢y, ..., ¢, € R. Evaluating both sides at a; gives p(a;) = b; = ¢; - fi(a;). Thus, we
get

p(x) Zm fi(x).



Lagrange Interpolation (contd)

Let a1,...,a, € R be distinct. Say we want to find the unique polynomial p of degree at
most n — 1 satisfying p(a;) = b; Vi € [n].

* Argument works if replace R with any field IF having at least n distinct points.



Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M|
with a group of n people, such that if any d of them get together, they are able to learn
the secret message. However, if fewer than d of them are together, they do not get any
information about the secret.

* E.g., password, (decryption key for) sensitive data, etc.

Shamir's secret sharing Xa 7 languages v

Article  Talk Read Edit View history

From Wikipedia, the free encyclopedia

This article includes a list of general references, but it lacks sufficient corresponding inline citations.
? Please help to improve this article by introducing more precise citations. (February 2019) (Learn how and when

fo remove this template message)

Shamir's secret sharing (SSS) is an efficient secret sharing algorithm for distributing private information (the "secret") among a group so that the secret

cannot be revealed unless a quorum of the group acts together to pool their knowledge. To achieve this, the secret is mathematically divided into parts (the
"shares") from which the secret can be reassembled only when a sufficient number of shares are combined. SSS has the property of information-theoretic
security, meaning that even if an attacker steals some shares, it is impossible for the attacker to reconstruct the secret unless they have stolen the quorum

number of shares.

Shamir's secret sharing is used in some applications to share the access keys to a master secret.
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Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M|
with a group of n people, such that if any d of them get together, they are able to learn
the secret message. However, if fewer than d of them are together, they do not get any
information about the secret. We can then proceed as follows:

e Choose a finite field IF,, with p > max(n, M).

e Choose d — 1 random values by,...,b;_1in {0,..,p—1},and let Q € ]F?“r_1 (x| be the
polynomial
Q=s5+bx+bx?+..4+b;_1x* L.

Note that the secret is Q(0).
e Fori=1,..,n, give person i the pair (i, Q(7)).

One direction: If any d get together, can uniguely determine Q by Lagrange interpolation,
recover secret by evaluating Q at 0.
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Secret Sharing

Consider the problem of sharing a secret s, which is an integer in a known range [0, M|
with a group of n people, such that if any d of them get together, they are able to learn
the secret message. However, if fewer than d of them are together, they do not get any
information about the secret. We can then proceed as follows:

e Choose a finite field IF,, with p > max(n, M).

e Choose d — 1 random values by,...,b;_1in {0,..,p—1},and let Q € ]F?“r_1 (x| be the
polynomial
Q=s5+bx+bx?+..4+b;_1x* L.

Note that the secret is Q(0).

e Fori=1,..,n, give person i the pair (i, Q(7)).
Other direction:
 If d — 1 get together, for any secret s’, exists a consistent polynomial Q'. In fact, exactly one.

» Because Q chosen randomly from p¢~1 polynomials consistent with secret, this means any
two secrets have the same probability of producing the observed d — 1 shares. 12



3 Linear Transformations

Definition 3.1 Let V and W be vector spaces over the same field . A map ¢ : V — W is called a
linear transformation if

- ¢(v1 +v2) = @(v1) + @(v2) Voy,v2€ V.
- ¢(c-v)=c-¢p(v) YoeV.

Example 3.2

- Amatrix A € R"*" (m rows, n columns) defines a linear transformation from R" to R™.
Note that we are using (v) = Av, where we are viewing the elements of R™ and R" as
column vectors.

- ¢ : C([0,1], R) — C([0,2],R) defined by o(f)(x) = f(x/2). Recall that C([a,b],R) =
{f:la bl = R| fis continuous}.

- ¢:C([0,1],R) — C([0, 1], R) defined by ¢(f)(x) = £(x?).
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Important properties

Proposition 3.3 Let V, W be vector spaces over IF and let B be a basis for V. Letaw : B — W
be an arbitrary map. Then there exists a unique linear transformation ¢ : V. — W satisfying
¢(v) = a(v) Vv € B.

Proof: Since B is a basis, any u € V can be written in a unique way as a sum ) _,p a7,
where the values a, are in F and only finitely many are nonzero. By the two properties of
a linear transformation, we must then have ¢(u) = Y, .5 a,¢(v). Since the values ¢(v) are
fixed for all v € B, this gives the unique solution of ¢(u) = Y} g a,&(v). Moreover, this ¢
indeed satisfies the property that ¢(v) = a(v) for all v € B. _
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Important properties

Proposition 3.3 Let V, W be vector spaces over IF and let B be a basis for V. Letaw : B — W
be an arbitrary map. Then there exists a unique linear transformation ¢ : V. — W satisfying
¢(v) = a(v) Vv € B.

Proposition 3.3 solidifies the connection between linear transformations and matrices. We
saw that a matrix A € F""*" corresponds to a linear transformation ¢, from F" to [F"
defined as @ 4(v) = Av. But we can also go the other way as well. Given a linear transfor-
mation ¢ : F" — F", consider the standard basis B = {ey, ...,e, } for [F", where ¢; has 1 in
its ith coordinate and 0 in all other coordinates. By Proposition 3.3, ¢ is uniquely defined
by its effect on B, and so can be represented by the matrix A € F"*" with ¢(e;) as its ith
column.
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Definition 3.4 Let ¢ : V — W be a linear transformation. We define its kernel and image as:
- ker(¢) := {ve V|e(v) =0w}. [Kernelalso called “nullspace”]
- im(¢) = {¢(v) |v eV}

Proposition 3.5 ker(¢) is a subspace of V and im(¢) is a subspace of W.

Definition 3.6 dim(im(¢)) is called the rank and dim (ker(¢)) is called the nullity of ¢.

10
12

01 Rank is 2
What is rank of ¢4 for A = ?

Nullspace just Oy since columns are independent

011 ; Rank is 2

2
102] How about nullspace? All multiples of[ 1 ]
_1 17

What is rank of ¢ for B=



Definition 3.4 Let ¢ : V — W be a linear transformation. We define its kernel and image as:

- ker(¢) := {ve V|e¢e(v) =0w}. [Kernelalso called “nullspace”]

- im(¢) = {¢(v) |v eV}

Proposition 3.5 ker(¢) is a subspace of V and im(¢) is a subspace of W.

Definition 3.6 dim(im(¢)) is called the rank and dim (ker(¢)) is called the nullity of ¢.
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How about A =

(Mapping R” to R3)
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Rankis 3

Nullity is 4
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Proposition 3.7 (rank-nullity theorem) If V is a finite dimensional vector space and ¢ : V —
W is a linear transformation, then

dim(ker(¢)) + dim(im(¢)) = dim(V).

Proof: Letn = dim(V) and let k = dim(ker(¢)). Choose a basis v, ..., v for the kernel
and then extend this to a basis B for V with linearly independent vectors vy, 1, ..., v, (Which
we can always do, as we saw in the last class). We know that

im(¢) = Span ({¢(v1), ..., ¢(vn) }) = Span ({@(vk+1), ..., p(vn) }).

So, to show that the rank is n — k, all that remains is to show that ¢(v¢.1),..., ¢(v,) are
linearly independent. This follows from the definition of linear transformation: if some
linear combination of ¢(vxy1), ..., ¢(vx) equals 0 then so does ¢ of the same linear combi-
nation of vy 4, ..., Uy, meaning that this linear combination of v, 4, ..., v, lies in the kernel.
This contradicts the fact that they were all linearly independent of v, ..., vy. u
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